Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 402
Filtrar
1.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562798

RESUMO

Mass spectrometry-based phosphoproteomics offers a comprehensive view of protein phosphorylation, but limited knowledge about the regulation and function of most phosphosites restricts our ability to extract meaningful biological insights from phosphoproteomics data. To address this, we combine machine learning and phosphoproteomic data from 1,195 tumor specimens spanning 11 cancer types to construct CoPheeMap, a network mapping the co-regulation of 26,280 phosphosites. Integrating network features from CoPheeMap into a machine learning model, CoPheeKSA, we achieve superior performance in predicting kinase-substrate associations. CoPheeKSA reveals 24,015 associations between 9,399 phosphosites and 104 serine/threonine kinases, including many unannotated phosphosites and under-studied kinases. We validate the accuracy of these predictions using experimentally determined kinase-substrate specificities. By applying CoPheeMap and CoPheeKSA to phosphosites with high computationally predicted functional significance and cancer-associated phosphosites, we demonstrate the effectiveness of these tools in systematically illuminating phosphosites of interest, revealing dysregulated signaling processes in human cancer, and identifying under-studied kinases as putative therapeutic targets.

2.
Cancer Discov ; 14(4): 550-551, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571434

Assuntos
Comunicação , Humanos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38529321

RESUMO

Thioredoxin-interacting protein (TXNIP) plays a critical role in regulation of cellular redox reactions and inflammatory responses by interacting with thioredoxin (TRX) or the inflammasome. The role of TXNIP in lung fibrosis and molecular regulation of its stability have not been well studied. Therefore, here we investigated the molecular regulation of TXNIP stability and its role in TGF-ß1-mediated signaling in lung fibroblasts. TXNIP protein levels were significantly decreased in lung tissues from bleomycin-challenged mice. Overexpression of TXNIP attenuated transforming growth factor-ß1 (TGF-ß1)-induced phosphorylation of Smad2/3 and fibronectin expression in lung fibroblasts, suggesting that decrease in TXNIP may contribute to the pathogenesis of lung fibrosis. Further, we observed that TGF-ß1 lowered TXNIP protein levels, while TXNIP mRNA levels were unaltered by TGF-ß1 exposure. TGF-ß1 induced TXNIP degradation via the ubiquitin-proteasome system. A serine residue mutant (TNXIP-S308A) was resistant to TGF-ß1-induced degradation. Furthermore, downregulationof ubiquitin-specific protease-13 (USP13) promoted the TGF-ß1-induced TXNIP ubiquitination and degradation. Mechanistic studies revealed that USP13 targeted and deubiquitinated TXNIP. The results of this study revealed that the decrease of TXNIP in lungs apparently contributes to the pathogenesis of pulmonary fibrosis and that USP13 can target TXNP for deubiquitination and regulate its stability.

4.
Proc Natl Acad Sci U S A ; 121(8): e2317343121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38359293

RESUMO

Glucose and amino acid metabolism are critical for glioblastoma (GBM) growth, but little is known about the specific metabolic alterations in GBM that are targetable with FDA-approved compounds. To investigate tumor metabolism signatures unique to GBM, we interrogated The Cancer Genome Atlas for alterations in glucose and amino acid signatures in GBM relative to other human cancers and found that GBM exhibits the highest levels of cysteine and methionine pathway gene expression of 32 human cancers. Treatment of patient-derived GBM cells with the FDA-approved single cysteine compound N-acetylcysteine (NAC) reduced GBM cell growth and mitochondrial oxygen consumption, which was worsened by glucose starvation. Normal brain cells and other cancer cells showed no response to NAC. Mechanistic experiments revealed that cysteine compounds induce rapid mitochondrial H2O2 production and reductive stress in GBM cells, an effect blocked by oxidized glutathione, thioredoxin, and redox enzyme overexpression. From analysis of the clinical proteomic tumor analysis consortium (CPTAC) database, we found that GBM cells exhibit lower expression of mitochondrial redox enzymes than four other cancers whose proteomic data are available in CPTAC. Knockdown of mitochondrial thioredoxin-2 in lung cancer cells induced NAC susceptibility, indicating the importance of mitochondrial redox enzyme expression in mitigating reductive stress. Intraperitoneal treatment of mice bearing orthotopic GBM xenografts with a two-cysteine peptide induced H2O2 in brain tumors in vivo. These findings indicate that GBM is uniquely susceptible to NAC-driven reductive stress and could synergize with glucose-lowering treatments for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Camundongos , Animais , Peróxido de Hidrogênio , Peróxidos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Proteômica , Acetilcisteína/farmacologia , Glucose , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética
5.
Science ; 383(6683): eadj1415, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330136

RESUMO

Lung adenocarcinoma (LUAD) and small cell lung cancer (SCLC) are thought to originate from different epithelial cell types in the lung. Intriguingly, LUAD can histologically transform into SCLC after treatment with targeted therapies. In this study, we designed models to follow the conversion of LUAD to SCLC and found that the barrier to histological transformation converges on tolerance to Myc, which we implicate as a lineage-specific driver of the pulmonary neuroendocrine cell. Histological transformations are frequently accompanied by activation of the Akt pathway. Manipulating this pathway permitted tolerance to Myc as an oncogenic driver, producing rare, stem-like cells that transcriptionally resemble the pulmonary basal lineage. These findings suggest that histological transformation may require the plasticity inherent to the basal stem cell, enabling tolerance to previously incompatible oncogenic driver programs.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-myc , Carcinoma de Pequenas Células do Pulmão , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/terapia , Células Epiteliais/patologia , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/terapia , Oncogenes , Linhagem da Célula , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-akt/genética , Terapia de Alvo Molecular
6.
Nat Cancer ; 5(3): 433-447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286827

RESUMO

Liver metastasis (LM) confers poor survival and therapy resistance across cancer types, but the mechanisms of liver-metastatic organotropism remain unknown. Here, through in vivo CRISPR-Cas9 screens, we found that Pip4k2c loss conferred LM but had no impact on lung metastasis or primary tumor growth. Pip4k2c-deficient cells were hypersensitized to insulin-mediated PI3K/AKT signaling and exploited the insulin-rich liver milieu for organ-specific metastasis. We observed concordant changes in PIP4K2C expression and distinct metabolic changes in 3,511 patient melanomas, including primary tumors, LMs and lung metastases. We found that systemic PI3K inhibition exacerbated LM burden in mice injected with Pip4k2c-deficient cancer cells through host-mediated increase in hepatic insulin levels; however, this circuit could be broken by concurrent administration of an SGLT2 inhibitor or feeding of a ketogenic diet. Thus, this work demonstrates a rare example of metastatic organotropism through co-optation of physiological metabolic cues and proposes therapeutic avenues to counteract these mechanisms.


Assuntos
Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Insulina , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
7.
J Cell Biol ; 223(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38059900

RESUMO

Subcellular location and activation of Tank Binding Kinase 1 (TBK1) govern precise progression through mitosis. Either loss of activated TBK1 or its sequestration from the centrosomes causes errors in mitosis and growth defects. Yet, what regulates its recruitment and activation on the centrosomes is unknown. We identified that NAK-associated protein 1 (NAP1) is essential for mitosis, binding to and activating TBK1, which both localize to centrosomes. Loss of NAP1 causes several mitotic and cytokinetic defects due to inactivation of TBK1. Our quantitative phosphoproteomics identified numerous TBK1 substrates that are not only confined to the centrosomes but are also associated with microtubules. Substrate motifs analysis indicates that TBK1 acts upstream of other essential cell cycle kinases like Aurora and PAK kinases. We also identified NAP1 as a TBK1 substrate phosphorylating NAP1 at S318 to promote its degradation by the ubiquitin proteasomal system. These data uncover an important distinct function for the NAP1-TBK1 complex during cell division.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Citocinese , Mitose , Proteínas Serina-Treonina Quinases , Humanos , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
8.
Cell Rep ; 42(12): 113535, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38060450

RESUMO

The phosphoinositide 3-kinase p110α is an essential mediator of insulin signaling and glucose homeostasis. We interrogated the human serine, threonine, and tyrosine kinome to search for novel regulators of p110α and found that the Hippo kinases phosphorylate p110α at T1061, which inhibits its activity. This inhibitory state corresponds to a conformational change of a membrane-binding domain on p110α, which impairs its ability to engage membranes. In human primary hepatocytes, cancer cell lines, and rodent tissues, activation of the Hippo kinases MST1/2 using forskolin or epinephrine is associated with phosphorylation of T1061 and inhibition of p110α, impairment of downstream insulin signaling, and suppression of glycolysis and glycogen synthesis. These changes are abrogated when MST1/2 are genetically deleted or inhibited with small molecules or if the T1061 is mutated to alanine. Our study defines an inhibitory pathway of PI3K signaling and a link between epinephrine and insulin signaling.


Assuntos
Proteínas Serina-Treonina Quinases , Humanos , Animais , Camundongos , Linhagem Celular , Camundongos Endogâmicos C57BL , Masculino , Feminino , Epinefrina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Deleção de Genes , Colforsina/farmacologia , Insulina/metabolismo , Fosforilação/efeitos dos fármacos , Via de Sinalização Hippo/efeitos dos fármacos , Via de Sinalização Hippo/genética
9.
bioRxiv ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37904985

RESUMO

The tumor suppressor LKB1 is a serine/threonine protein kinase that is frequently mutated in human lung adenocarcinoma (LUAD). LKB1 regulates a complex signaling network that is known to control cell polarity and metabolism; however, the pathways that mediate the tumor suppressive activity of LKB1 are incompletely defined. To identify mechanisms of LKB1- mediated growth suppression we developed a spheroid-based cell culture assay to study LKB1- dependent growth. Using this assay, along with genome-wide CRISPR screens and validation with orthogonal methods, we discovered that LKB1 suppresses growth, in part, by activating the PIKFYVE lipid kinase, which promotes the internalization of wild-type EGFR. Our findings reveal a new mechanism of regulation of EGFR, which may have implications for the treatment of LKB1 -mutant LUAD.

10.
Cell ; 186(18): 3921-3944.e25, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37582357

RESUMO

Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles. A correlation between predicted neoantigen burden and measured T cell infiltration suggests potential vulnerabilities for immunotherapies. Patterns of cancer hallmarks vary by polygenic protein abundance ranging from uniform to heterogeneous. Overall, our work demonstrates the value of comprehensive proteogenomics in understanding the functional states of oncogenic drivers and their links to cancer development, surpassing the limitations of studying individual cancer types.


Assuntos
Neoplasias , Proteogenômica , Humanos , Neoplasias/genética , Oncogenes , Transformação Celular Neoplásica/genética , Variações do Número de Cópias de DNA
11.
Cell ; 186(18): 3945-3967.e26, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37582358

RESUMO

Post-translational modifications (PTMs) play key roles in regulating cell signaling and physiology in both normal and cancer cells. Advances in mass spectrometry enable high-throughput, accurate, and sensitive measurement of PTM levels to better understand their role, prevalence, and crosstalk. Here, we analyze the largest collection of proteogenomics data from 1,110 patients with PTM profiles across 11 cancer types (10 from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium [CPTAC]). Our study reveals pan-cancer patterns of changes in protein acetylation and phosphorylation involved in hallmark cancer processes. These patterns revealed subsets of tumors, from different cancer types, including those with dysregulated DNA repair driven by phosphorylation, altered metabolic regulation associated with immune response driven by acetylation, affected kinase specificity by crosstalk between acetylation and phosphorylation, and modified histone regulation. Overall, this resource highlights the rich biology governed by PTMs and exposes potential new therapeutic avenues.


Assuntos
Neoplasias , Processamento de Proteína Pós-Traducional , Proteômica , Humanos , Acetilação , Histonas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fosforilação , Proteômica/métodos
12.
Neuro Oncol ; 25(12): 2165-2176, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-37399061

RESUMO

BACKGROUND: Insulin feedback is a critical mechanism responsible for the poor clinical efficacy of phosphatidylinositol 3-kinase (PI3K) inhibition in cancer, and hyperglycemia is an independent factor associated with poor prognosis in glioblastoma (GBM). We investigated combination anti-hyperglycemic therapy in a mouse model of GBM and evaluated the association of glycemic control in clinical trial data from patients with GBM. METHODS: The effect of the anti-hyperglycemic regimens, metformin and the ketogenic diet, was evaluated in combination with PI3K inhibition in patient-derived GBM cells and in an orthotopic GBM mouse model. Insulin feedback and the immune microenvironment were retrospectively evaluated in blood and tumor tissue from a Phase 2 clinical trial of buparlisib in patients with recurrent GBM. RESULTS: We found that PI3K inhibition induces hyperglycemia and hyperinsulinemia in mice and that combining metformin with PI3K inhibition improves the treatment efficacy in an orthotopic GBM xenograft model. Through examination of clinical trial data, we found that hyperglycemia was an independent factor associated with poor progression-free survival in patients with GBM. We also found that PI3K inhibition increased insulin receptor activation and T-cell and microglia abundance in tumor tissue from these patients. CONCLUSION: Reducing insulin feedback improves the efficacy of PI3K inhibition in GBM in mice, and hyperglycemia worsens progression-free survival in patients with GBM treated with PI3K inhibition. These findings indicate that hyperglycemia is a critical resistance mechanism associated with PI3K inhibition in GBM and that anti-hyperglycemic therapy may enhance PI3K inhibitor efficacy in GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Hiperglicemia , Metformina , Humanos , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Fosfatidilinositol 3-Quinase/farmacologia , Fosfatidilinositol 3-Quinase/uso terapêutico , Fosfatidilinositol 3-Quinases , Insulina/farmacologia , Insulina/uso terapêutico , Retroalimentação , Estudos Retrospectivos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Proliferação de Células , Hiperglicemia/tratamento farmacológico , Metformina/farmacologia , Metformina/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
13.
bioRxiv ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37425798

RESUMO

Vitamin C (vitC) is a vital nutrient for health and also used as a therapeutic agent in diseases such as cancer. However, the mechanisms underlying vitC's effects remain elusive. Here we report that vitC directly modifies lysine without enzymes to form vitcyl-lysine, termed "vitcylation", in a dose-, pH-, and sequence-dependent manner across diverse proteins in cells. We further discover that vitC vitcylates K298 site of STAT1, which impairs its interaction with the phosphatase PTPN2, preventing STAT1 Y701 dephosphorylation and leading to increased STAT1-mediated IFN pathway activation in tumor cells. As a result, these cells have increased MHC/HLA class-I expression and activate immune cells in co-cultures. Tumors collected from vitC-treated tumor-bearing mice have enhanced vitcylation, STAT1 phosphorylation and antigen presentation. The identification of vitcylation as a novel PTM and the characterization of its effect in tumor cells opens a new avenue for understanding vitC in cellular processes, disease mechanisms, and therapeutics.

14.
mBio ; 14(4): e0100723, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37345956

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, drastically modifies infected cells to optimize virus replication. One such modification is the activation of the host p38 mitogen-activated protein kinase (MAPK) pathway, which plays a major role in inflammatory cytokine production, a hallmark of severe COVID-19. We previously demonstrated that inhibition of p38/MAPK activity in SARS-CoV-2-infected cells reduced both cytokine production and viral replication. Here, we combined quantitative genetic screening, genomics, proteomics, and phosphoproteomics to better understand mechanisms underlying the dependence of SARS-CoV-2 on the p38 pathway. We found that p38ß is a critical host factor for SARS-CoV-2 replication in multiple relevant cell lines and that it functions at a step after viral mRNA expression. We identified putative host and viral p38ß substrates in the context of SARS-CoV-2 infection and found that most host substrates have intrinsic antiviral activities. Taken together, this study reveals a unique proviral function for p38ß and supports exploring p38ß inhibitor development as a strategy toward creating a new class of COVID-19 therapies. IMPORTANCE SARS-CoV-2 is the causative agent of the COVID-19 pandemic that has claimed millions of lives since its emergence in 2019. SARS-CoV-2 infection of human cells requires the activity of several cellular pathways for successful replication. One such pathway, the p38 MAPK pathway, is required for virus replication and disease pathogenesis. Here, we applied systems biology approaches to understand how MAPK pathways benefit SARS-CoV-2 replication to inform the development of novel COVID-19 drug therapies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Citocinas , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Pandemias , SARS-CoV-2/metabolismo , Replicação Viral , Proteína Quinase 11 Ativada por Mitógeno/metabolismo
15.
bioRxiv ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37205525

RESUMO

Mitochondria-rich brown adipocytes dissipate cellular fuel as heat by thermogenic energy expenditure (TEE). Prolonged nutrient excess or cold exposure impair TEE and contribute to the pathogenesis of obesity, but the mechanisms remain incompletely understood. Here we report that stress-induced proton leak into the matrix interface of mitochondrial innermembrane (IM) mobilizes a group of proteins from IM into matrix, which in turn alter mitochondrial bioenergetics. We further determine a smaller subset that correlates with obesity in human subcutaneous adipose tissue. We go on to show that the top factor on this short list, acyl-CoA thioesterase 9 (ACOT9), migrates from the IM into the matrix upon stress where it enzymatically deactivates and prevents the utilization of acetyl-CoA in TEE. The loss of ACOT9 protects mice against the complications of obesity by maintaining unobstructed TEE. Overall, our results introduce aberrant protein translocation as a strategy to identify pathogenic factors. One-Sentence Summary: Thermogenic stress impairs mitochondrial energy utilization by forcing translocation of IM-bound proteins into the matrix.

16.
Cancer Discov ; 13(4): 797-798, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009701
17.
Nature ; 617(7959): 147-153, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36949200

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is characterized by aggressive local invasion and metastatic spread, leading to high lethality. Although driver gene mutations during PDA progression are conserved, no specific mutation is correlated with the dissemination of metastases1-3. Here we analysed RNA splicing data of a large cohort of primary and metastatic PDA tumours to identify differentially spliced events that correlate with PDA progression. De novo motif analysis of these events detected enrichment of motifs with high similarity to the RBFOX2 motif. Overexpression of RBFOX2 in a patient-derived xenograft (PDX) metastatic PDA cell line drastically reduced the metastatic potential of these cells in vitro and in vivo, whereas depletion of RBFOX2 in primary pancreatic tumour cell lines increased the metastatic potential of these cells. These findings support the role of RBFOX2 as a potent metastatic suppressor in PDA. RNA-sequencing and splicing analysis of RBFOX2 target genes revealed enrichment of genes in the RHO GTPase pathways, suggesting a role of RBFOX2 splicing activity in cytoskeletal organization and focal adhesion formation. Modulation of RBFOX2-regulated splicing events, such as via myosin phosphatase RHO-interacting protein (MPRIP), is associated with PDA metastases, altered cytoskeletal organization and the induction of focal adhesion formation. Our results implicate the splicing-regulatory function of RBFOX2 as a tumour suppressor in PDA and suggest a therapeutic approach for metastatic PDA.


Assuntos
Processamento Alternativo , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Processamento Alternativo/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Animais , Metástase Neoplásica , Adesões Focais
18.
Angew Chem Int Ed Engl ; 62(18): e202302364, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36898968

RESUMO

Phosphatidylinositol 5-phosphate 4-kinase, type II, gamma (PIP4K2C) remains a poorly understood lipid kinase with minimal enzymatic activity but potential scaffolding roles in immune modulation and autophagy-dependent catabolism. Achieving potent and selective agents for PIP4K2C while sparing other lipid and non-lipid kinases has been challenging. Here, we report the discovery of the highly potent PIP4K2C binder TMX-4102, which shows exclusive binding selectivity for PIP4K2C. Furthermore, we elaborated the PIP4K2C binder into TMX-4153, a bivalent degrader capable of rapidly and selectively degrading endogenous PIP4K2C. Collectively, our work demonstrates that PIP4K2C is a tractable and degradable target, and that TMX-4102 and TMX-4153 are useful leads to further interrogate the biological roles and therapeutic potential of PIP4K2C.


Assuntos
Autofagia
19.
Sci Adv ; 9(5): eade8641, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36724278

RESUMO

Phosphatidylinositol (PI)regulating enzymes are frequently altered in cancer and have become a focus for drug development. Here, we explore the phosphatidylinositol-5-phosphate 4-kinases (PI5P4K), a family of lipid kinases that regulate pools of intracellular PI, and demonstrate that the PI5P4Kα isoform influences androgen receptor (AR) signaling, which supports prostate cancer (PCa) cell survival. The regulation of PI becomes increasingly important in the setting of metabolic stress adaptation of PCa during androgen deprivation (AD), as we show that AD influences PI abundance and enhances intracellular pools of PI-4,5-P2. We suggest that this PI5P4Kα-AR relationship is mitigated through mTORC1 dysregulation and show that PI5P4Kα colocalizes to the lysosome, the intracellular site of mTORC1 complex activation. Notably, this relationship becomes prominent in mouse prostate tissue following surgical castration. Finally, multiple PCa cell models demonstrate marked survival vulnerability following stable PI5P4Kα inhibition. These results nominate PI5P4Kα as a target to disrupt PCa metabolic adaptation to castrate resistance.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Animais , Humanos , Masculino , Camundongos , Antagonistas de Androgênios , Androgênios/metabolismo , Linhagem Celular Tumoral , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais
20.
Sci Transl Med ; 15(684): eade1857, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812344

RESUMO

Obesity, defined as a body mass index (BMI) ≥ 30, is an established risk factor for breast cancer among women in the general population after menopause. Whether elevated BMI is a risk factor for women with a germline mutation in BRCA1 or BRCA2 is less clear because of inconsistent findings from epidemiological studies and a lack of mechanistic studies in this population. Here, we show that DNA damage in normal breast epithelia of women carrying a BRCA mutation is positively correlated with BMI and with biomarkers of metabolic dysfunction. In addition, RNA sequencing showed obesity-associated alterations to the breast adipose microenvironment of BRCA mutation carriers, including activation of estrogen biosynthesis, which affected neighboring breast epithelial cells. In breast tissue explants cultured from women carrying a BRCA mutation, we found that blockade of estrogen biosynthesis or estrogen receptor activity decreased DNA damage. Additional obesity-associated factors, including leptin and insulin, increased DNA damage in human BRCA heterozygous epithelial cells, and inhibiting the signaling of these factors with a leptin-neutralizing antibody or PI3K inhibitor, respectively, decreased DNA damage. Furthermore, we show that increased adiposity was associated with mammary gland DNA damage and increased penetrance of mammary tumors in Brca1+/- mice. Overall, our results provide mechanistic evidence in support of a link between elevated BMI and breast cancer development in BRCA mutation carriers. This suggests that maintaining a lower body weight or pharmacologically targeting estrogen or metabolic dysfunction may reduce the risk of breast cancer in this population.


Assuntos
Neoplasias da Mama , Glândulas Mamárias Humanas , Feminino , Humanos , Animais , Camundongos , Mutação em Linhagem Germinativa , Leptina , Glândulas Mamárias Humanas/patologia , Fosfatidilinositol 3-Quinases , Proteína BRCA2 , Proteína BRCA1/genética , Neoplasias da Mama/patologia , Dano ao DNA , Epitélio/patologia , Obesidade , Estrogênios , Mutação , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...